Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features.

TitleComputer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features.
Publication TypeJournal Article
Year of Publication2018
AuthorsZheng Q, Furth SL, Tasian GE, Fan Y
JournalJ Pediatr Urol
Date Published2018 Oct 31
ISSN1873-4898
Abstract

INTRODUCTION: Anatomic characteristics of kidneys derived from ultrasound images are potential biomarkers of children with congenital abnormalities of the kidney and urinary tract (CAKUT), but current methods are limited by the lack of automated processes that accurately classify diseased and normal kidneys.

OBJECTIVE: The objective of the study was to evaluate the diagnostic performance of deep transfer learning techniques to classify kidneys of normal children and those with CAKUT.

STUDY DESIGN: A transfer learning method was developed to extract features of kidneys from ultrasound images obtained during routine clinical care of 50 children with CAKUT and 50 controls. To classify diseased and normal kidneys, support vector machine classifiers were built on the extracted features using (1) transfer learning imaging features from a pretrained deep learning model, (2) conventional imaging features, and (3) their combination. These classifiers were compared, and their diagnosis performance was measured using area under the receiver operating characteristic curve (AUC), accuracy, specificity, and sensitivity.

RESULTS: The AUC for classifiers built on the combination features were 0.92, 0.88, and 0.92 for discriminating the left, right, and bilateral abnormal kidney scans from controls with classification rates of 84%, 81%, and 87%; specificity of 84%, 74%, and 88%; and sensitivity of 85%, 88%, and 86%, respectively. These classifiers performed better than classifiers built on either the transfer learning features or the conventional features alone (p < 0.001).

DISCUSSION: The present study validated transfer learning techniques for imaging feature extraction of ultrasound images to build classifiers for distinguishing children with CAKUT from controls. The experiments have demonstrated that the classifiers built on the transfer learning features and conventional image features could distinguish abnormal kidney images from controls with AUCs greater than 0.88, indicating that classification of ultrasound kidney scans has a great potential to aid kidney disease diagnosis. A limitation of the present study is the moderate number of patients that contributed data to the transfer learning approach.

CONCLUSIONS: The combination of transfer learning and conventional imaging features yielded the best classification performance for distinguishing children with CAKUT from controls based on ultrasound images of kidneys.

DOI10.1016/j.jpurol.2018.10.020
Alternate JournalJ Pediatr Urol
PubMed ID30473474